SHORT COMMUNICATION

Superconductivity of LaOs₂

A. C. LAWSON*

Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, Calif. 92037 (U.S.A.)

JOHN F. CANNON, DONALD L. ROBERTSON and H. TRACY HALL^{**} Department of Chemistry, Brigham Young University, Provo, Utah 64601 (U.S.A.) (Received January 27, 1973)

Recently, LaOs₂ has been found to exist in both the cubic MgCu₂-type and hexagonal MgZn₂-type structures, the latter induced by the application of high temperature and pressure¹. Since the cubic form becomes superconducting at a relatively high temperature $(\sim 9K)^2$, it was of interest to determine the transition temperature of the newly discovered hexagonal form.

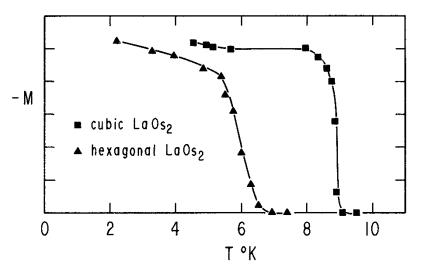


Fig. 1. Superconducting transitions of cubic and hexagonal LaOs₂.

The temperature dependence of sample magnetization was measured in an applied field of 30 Oe. Figure 1 shows the transitions which occur at 8.9K for cubic LaOs₂ but only 5.9K for hexagonal LaOs₂. The presence of free lanthanum ($T_c \sim 5K$) is also evident in both transitions.

An X-ray powder diffraction pattern obtained at 6K showed that cubic $LaOs_2$ retains its cubic structure down to this temperature. (A deformation as small as 10^{-3} could have been detected in this experiment.) The instability of cubic $LaOs_2$ is thus restricted to high temperatures and pressures.

In view of the superconductivity of $CeRu_2^{3}$, it is also of interest to consider the absence of superconductivity in both MgCu₂-type⁴ and MgZn₂-type⁵ CeOs₂. In cubic CeOs₂, superconductivity is inhibited by the fractional cerium *f*-electron which lattice parameter measurements have shown must exist in this compound⁶. Since the hexagonal form is prepared under pressure, one might expect that this *f*-

^{*} Research sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under AFOSR contract No. AFOSR-F44620-72-C-0017.

^{**} Research sponsored by the National Science Foundation.

electron would be squeezed away and that superconductivity could result. However, comparison of the unit cell volumes of cubic and hexagonal $LaOs_2$, $CeOs_2$ and $PrOs_2$ (Table I) shows that for $CeOs_2$ no significant compression occurs at all as the result of the cubic-hexagonal conversion. Superconductivity of the hexagonal CeOs₂ is therefore not expected.

	V_{cubic} (Å ³)	V_{hex} (Å ³)	$DV/V_{cubic} \times 10^3$
LaOs ₂	464.0(0.4)	462.0(0.2)	-4.7(1.0)*
CeOs ₂	437.8(0.2)	437.9(0.2)	+0.2(0.6)
PrOs ₂	449.5(0.2)	448.4(0.2)	-2.4(0.6)

TABLE I

* The number in parentheses represents the most probable error.

We are pleased to thank B. T. Matthias and M. B. Maple for their helpful comments.

REFERENCES

¹ J. F. Cannon, D. L. Robertson, H. T. Hall and A. C. Lawson, J. Less Common Metals, to be published.

² B. T. Matthias, private communication.

³ V. B. Compton and B. T. Matthias, *Acta Cryst.*, 12 (1959) 651.

⁴ B. T. Matthias, T. H. Geballe and V. B. Compton, *Rev. Mod. Phys.*, 35 (1963) 1.

⁵ Present work.

⁶ K. A. Gschneidner, *Rare Earth Metals*, Van Nostrand, Princeton, N.J., 1961, p. 382.